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Abstract--This paper discusses and compares HVDC 
ground electrode design methods in various soil structures. 
A number of cases are selected based on existing HVDC 
ground electrodes in order to compare the conventional 
simplified design method (Method A) with a more 
advanced grounding design method using a specialized 
engineering software (Method B). Various soil structures 
considered include horizontally layered soils, vertically 
layered soils and finite volume soils. In all cases studied, 
grounding grid resistances, current distributions, earth 
surface potentials and touch/step voltages are computed 
and compared. The results of Method B are also compared 
with measurements.  

 
For the cases studied in this paper, it is found that the 

step voltages computed by Method A are usually lower 
than those obtained using Method B. This is especially true 
for a horizontal linear electrode for which the step voltages 
near the end of electrode could be underestimated by as 
much as 48%. The results presented in this paper provide 
useful insight and information for accurately designing DC 
ground electrodes in various soil structures.  
 

Index Terms-- HVDC Systems, Grounding, Earthing, 
Safety 

I. INTRODUCTION 

HVDC has proved to be well suited to specific 
applications such as long-distance power transmission. 
Today, there are more than 60 HVDC projects 
worldwide, transmitting more than 50GW of power 
[1,2]. Presently, a number of major HVDC projects are 
taking place in China. The increased utilization of 
HVDC transmission systems has created the need for 
accurate methods to design and evaluate the 
performance of HVDC grounding systems. 

 
The design of HVDC ground electrodes involves 

many fundamental parameters, such as the electrode 
configuration, as well as the soil structure and 
characteristics. In the past (maybe still at present), the 
electrode design was carried out using conventional 

simplified or empirical methods, in which the soil is 
approximated by a uniform medium and the 
computations of ground electrode resistance and 
potential gradients are carried out based on analytical 
formulae. When the uniform soil approximation is no 
longer valid (e.g., electrodes near a river or the sea) or 
the ground electrode configuration contains 
irregularities, such methods may result in unsafe or 
overdesigned grounding systems… or both! 

These situations may endanger human life and 
destroy electrical equipment or lead to unjustified 
additional costs, particularly in the case of large ground 
electrodes, or both. 

In this paper, the design of HVDC electrodes is 
compared between the conventional simplified method 
(Method A) and a more advanced grounding design 
method (Method B) using a specialized engineering 
software [3,4].  

The following representative cases are selected 
based on Appendix A of [5] and [6]:  

• Ring and star electrodes in uniform and 
horizontally layered soils. 

• Horizontal linear electrode in a finite volume soil 
(this could represent electrodes placed near a 
river).  

• Deep vertical electrodes in a vertically layered 
soil (this could represent electrodes placed near 
the sea). 

In all cases, grounding grid resistances, current 
distributions, earth surface potentials and touch/step 
voltages are computed and compared with the computed 
results and measurement results in [5,6].  

II. HVDC GROUNDING DESIGN METHODS 

Unlike grounding systems of HVAC system, which 
are designed only for a fault condition, HVDC ground 
electrodes are designed for normal, emergency and fault 
conditions [5,6]. Since a HVDC system may operate in 
one of three operation modes, namely monopolar, 
bipolar and homopolar, its ground electrode is required 
to provide an earth return circuit, permitting the current 
to flow into the earth in a monopolar mode or other 
modes involving current discharge into the soil. Because 
of the large magnitude (on the order of kA) and great 
duration (days) of the ground return current, the design 
of a DC ground electrodes involves many aspects, 
ranging from electrical and thermal properties of the 
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design to safety of people and animals in a large area 
around the electrode, and adverse effects (for example, 
corrosion aspects) on metallic utilities in the vicinity of 
a ground electrode [7,8]. These aspects are discussed in 
details in [5,6]. In this paper, we will focus on the 
electrical aspects of the design for the cases compared. 

A.  Conventional Simplified Methods (Method A) 
In these methods, an equivalent uniform soil is 

usually assumed, based on soil resistivity measurements 
made throughout the site. Since HVDC grounding 
electrodes are usually huge and far apart, the deep soil 
characteristics throughout a very large area must be 
used for realistic predictions. The following formulae 
are used for computing the resistances of electrodes in a 
uniform soils [5,6]: 
Ring electrode:                  R
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4ln                   (1) 

Horizontal linear electrode:R
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where:  
Re = electrode ground resistance, Ω 
ρ = soil resistivity, Ω-m 
D = diameter of ring, m 
l =  total length of conductor, m 
b = dh , m 
d = diameter of conductor, m 
h = burial depth of center of conductor, m 
 
For an array of linear or vertical electrodes or a star 

electrode, detailed expression are provided in [5,6] to 
account for resistances due to the mutual coupling 
between different electrode elements. 

 
The permissible touch and step voltages to which an 

individual may be subjected when the electrode is 
energized by the DC return current are determined, 
based on standards such as IEC Standard 479-1, 479-2 
and IEEE Standard 80. Based on IEEE Standard 80, the 
maximum tolerable step voltage for a human being is 

E IStep b s= +( )1000 6ρ                               (4) 
where Ib is the maximum permissible body current and 
ρs the surface soil resistivity. When a current I is 
injected into a horizontal electrode of length l, buried at 
a depth of h, the maximum potential gradient is given 
by [5]: 

E I
lhmax =

ρ
π2

                                      (5) 

B.  Computer-Aided Method with CDEGS (Method B)  
The engineering module MALZ of the CDEGS 

software is used for this study [3,4]. A moment method, 
accounting for the longitudinal resistances of the 
conductors, is used to compute the scalar potentials 
created at any point in the soil by any type of grounding 
system made of a network of arbitrarily oriented 
interconnected conductors. Various soil structures can 
be modeled, including horizontal multilayer soils, 

vertical multilayer soils, horizontal and vertical 
cylindrical soils, hemispherical soils and arbitrary finite-
volume soils. The software can be used to model coated 
ground conductors, each with different coating 
characteristics (i.e., coating resistivity, thickness, etc.), 
if desired. Thus, insulated HVDC ground cables and 
coated pipes can be accurately represented. This method 
avoids inconsistent or erroneous designs and facilitates 
the development of optimum grounding systems at a 
minimum cost. 

 
In the following, representative examples of HVDC 

electrode design in various soil structures are selected to 
compare both methods. Note that details of these 
electrode designs, as performed using the conventional 
simplified method (Method A), can be found in [5,6] 
and their related references. All touch voltages reported 
in Method B will be based on a maximum reach of 3 m 
from ground electrode conductors. 

III. RING ELECTRODE IN HORIZONTALLY 
LAYERED MULTILAYER SOIL 

 
The Rice Flats ring electrode, 10.6 km south of 

Celilo, the southern terminal of the DC Pacific Intertie, 
is chosen in this example [5,6]. The maximum 
permissible step voltage is 8.5 V, which is based on a 
6 mA body current limit and a 70 ohm-m uniform soil 
(see Equation 4). Fig. 1 shows the configuration of the 
ring modeled in Method B. The rated current of 1800 A 
is distributed along the ring by insulated conductors 
which are spaced about 3.5 m apart, as described in [6]. 
A profile is selected to examine the step voltages 
crossing the ring, starting 100 m inside the ring. The 
computation points are spaced 0.1 m apart. 

 

 
 

Fig. 1.   Rice Flats ring electrode modeled in Method B. 
 
Tables I-III present the ground electrode design 

parameters and computation results, based on Methods 
A and B. The multilayer soil model (Multilayer Soil 1) 
in Table II is taken from Appendix A of [5]. The soil 
data in [5] indicate a 70.0 Ω-m resistivity for depths in 
the range of 0-1.5 m, 36 Ω-m in the range of 12-15 m, 
and 100.0 Ω-m in the range of 210-300 m. Since there 
are no data for depths in the range of 1.5-12m, the 
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thickness of the top layer soil (70.0 Ω-m) is assumed to 
be 12 m, as a conservative approach. Similarly, the 100 
Ω-m resistivity is used for the bottom layer, starting at a 
depth of 15 m. The computed value of 0.064 Ω, based 
on this multilayer soil, is still lower than the measured 
resistance of 0.105 Ω [5]. In order to match the 
measured value, the bottom layer resistivity has to be 
increased. Table III shows another multilayer soil 
(Multilayer Soil 2), created by subdividing the bottom 
layer into two layers. A 500 Ω-m soil is introduced, 
starting at a depth of 300 m. The computed resistance is 
now 0.104 Ω. Table III shows that the GPR of the 
electrode increases significantly, while the maximum 
touch voltage and step voltages remain about the same 
(on the other hand, the touch voltage as a percentage of 
the electrode GPR is reduced in this case). 
 

Table I  
THE RING ELECTRODE AT RICE FLATS DESIGNED WITH 

METHOD A 
 

Electrode Characteristics 
Radius: 517.6 m; Equivalent Conductor Radius: 0.382 m (0.6 m 

by 0.6 m coke section); Burial Depth: 1.524 m 
Soil Model 

70 Ω-m uniform 
Computation Results 

Maximum  
GPR 
(V) 

 
Resistance 

(Ω) 
Current 
Density 
(A/m2) 

Earth 
Potential 

(V) 

Touch 
Voltage 

(V) 

Step 
Voltage 

(V) 
102  0.057  0.228 N/A N/A  4.0 V 

 
Table II   

THE RING ELECTRODE AT RICE FLATS DESIGNED WITH 
METHOD B (MULTILAYER SOIL 1) 

 
Soil Resistivity (Ω-m) Depth (m) 

70  12 
36  15 

100 Infinite 
Computation Results 

Maximum  
GPR 
(V) 

 
Resistance 

(Ω) 
Current 
Density 
(A/m2) 

Earth 
Potential 

(V) 

Touch 
Voltage 

(V) 

Step 
Voltage 

(V) 
116  0.064  0.233 112 15.4  4.4 V 

 
Table III   

THE RING ELECTRODE AT RICE FLATS DESIGNED WITH 
METHOD B (MULTILAYER SOIL 2) 

 
Soil Resistivity (Ω-m) Depth (m) 

70  12 
36  15 

100  300 
500 Infinite 

Computation Results 
Maximum  

GPR 
(V) 

 
Resistance 

(Ω) 
Current 
Density 
(A/m2) 

Earth 
Potential 

(V) 

Touch 
Voltage 

(V) 

Step 
Voltage 

(V) 
186  0.104  0.233 183 14.5  4.4 V 
 
To illustrate the influence of soil layering on step 

voltages, Multilayer Soil 3 is created from Multilayer 
Soil 1, by reducing the 70.0 Ω-m top layer thickness 
from 12 m to 2 m (the electrode is buried in the 70.0 Ω-

m soil). Fig. 2 shows step voltages computed along the 
profile indicated in Fig. 1. The step voltages are reduced 
in this soil structure. 

 

 
 

Fig. 2.   Step voltages crossing the ring on 20 m either side. 

IV. STAR ELECTRODE IN HORIZONTALLY 
LAYERED MULTILAYER SOIL 

 
The modified star electrode, 7.6 km south of the 

Benmore Power Plant, of the New Zealand North 
Island-South Island link is chosen. The design of this 
electrode represents a case where the layout of 
electrodes becomes irregular, due to land restrictions. 
Fig. 3 shows the electrode used in the Method B 
computer model. It is created from Fig. 31 of [6]. The 
rated current of 1200 A is distributed by insulated 
conductors which are spaced about 10 m apart. The soil 
data in [5] indicate a 490.0 Ω-m resistivity for a depth in 
the range of 0-0.3 m, 32.1 Ω-m in the range of 0.3-10.8 
m, and 100.0 Ω-m in the range of 10.8-150 m. The 
measured resistance is somewhere between 0.22-0.32 Ω. 

 

 
 

Fig. 3.   Modified star electrode at Benmore (traced based on 
Fig.31 of [6]). 
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Tables IV-VI compare the ground electrode designs 
based on the two methods. Tables IV and V show the 
results computed with Methods A and B, respectively, 
for a 61.5 Ω-m uniform soil. They show that the 
maximum step voltage computed with the more 
accurate method, 7.2 V, is significantly higher than that 
computed with the simplified method, i.e., 4.9 V. The 
resistance from Method B is lower. Using the three-
layer soil model (Table VI) from [5] (assuming a 100 
Ω-m bottom layer resistivity), the resistance, 0.101 Ω is 
about 10% lower than the 0.11 Ω obtained with 
Method A. Fig. 4 shows the step voltages at 10 m on 
either side of the ground electrode, on both sides, in this 
soil model. The maximum step voltage (6.44 V) is again 
higher than the value obtained with Method A and also 
higher than the highest measured value of 5 V [6]. In 
order to match the measured resistance, a four-layer soil 
model is created from the three-layer in Table VI, by 
assuming a bottom layer resistivity of 800 Ω-m, starting 
at a depth of 150 m. This soil is created because: (a) the 
resistance of a large electrode such as this one is mainly 
determined by the resistivity of the bottom layer; (b) no 
soil data is available from [5] at depths greater than 150 
m. The new computed resistance is now 0.21 Ω and the 
maximum step voltage is 7.5 V.  
 

TABLE IV   
THE STAR ELECTRODE DESIGN AT BENMORE BY  

METHOD A 
 

Electrode Characteristics 
Arm length: varying from 50-475 m; Equivalent Conductor 

Radius: 0.323 m (0.51 m by 0.51 m coke section); Burial Depth: 
1.778 m 

Soil Model 
61.5 Ω-m uniform 

Computation Results 
Maximum  

GPR 
(V) 

 
Resistance 

(Ω) 
Current 
Density 
(A/m2) 

Earth 
Potential 

(V) 

Touch 
Voltage 

(V) 

Step 
Voltage 

(V) 
136  0.113  0.27 N/A N/A  4.9 V 

 
TABLE V   

THE STAR ELECTRODE DESIGN AT BENMORE BY  
METHOD B (61.5 Ω-M UNIFORM SOIL) 

 
Computation Results 

Maximum  
GPR 
(V) 

 
Resistance 

(Ω) 
Current 
Density 
(A/m2) 

Earth 
Potential 

(V) 

Touch 
Voltage 

(V) 

Step 
Voltage 

(V) 
106  0.088  0.926 105 39  7.2 V 

 
TABLE VI   

THE RING ELECTRODE DESIGN AT RICE FLATS BY METHOD 
B (THREE-LAYER SOIL MODEL [5]) 

 
Soil Resistivity (Ω-m) Depth (m) 

490  0.3 
32.1  10.8 
100 Infinite 

Computation Results 
Maximum  

GPR 
(V) 

 
Resistance 

(Ω) 
Current 
Density 
(A/m2) 

Earth 
Potential 

(V) 

Touch 
Voltage 

(V) 

Step 
Voltage 

(V) 
121  0.101  1.309 120 30  6.4 V 

 

 
 

Fig. 4.   Step voltages above portion of star ground electrode at 
Benmore (three-layer soil model in Table VI used). 

V. HORIZONTAL LINEAR ELECTRODE IN 
FINITE VOLUME SOIL 

 
Linear electrodes must be used when only a long and 

narrow strip of land is available. As compared with the 
ring and star electrodes, the linear electrode occupies 
less land, but has a larger current density near the ends 
of the electrode, resulting in greater step voltages at 
these locations (a ring electrode offers the smallest 
maximum electrode current density). The horizontal 
linear electrode design in Chapter 7 of [5] is studied in 
this section. Two cases are studied with Method B: (a) 
the electrode buried in a 50 Ω-m uniform soil; (b) the 
electrode is assumed to be placed 20 m away from a 
river, which is modeled as a finite volume of soil. Fig. 5 
shows the configuration of the electrode placed near the 
river. The 100 m wide river is represented by a 
horizontal finite volume soil model. The water in the 
river has a low resistivity of 10 Ω-m. As shown in 
Fig. 5, the four horizontal electrodes are spaced 7.5 m 
apart and buried at a depth of 2.25 m in a native soil 
with a resistivity of 50 Ω-m. The spacing and the burial 
depth are based on the final design in [5], which 
provides safe step voltages. The rated current of 1250 A 
is distributed along the electrodes by insulated 
conductors which are spaced 11.65 m apart. 

 
 

Fig. 5.   (a) Horizontal linear electrode near a river; (b) Cross-
section of a river modeled in a finite volume soil. 
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Table VII presents the ground electrode designed 
with Method A. Tables VIII and IX present computation 
results from Method B, for the uniform and finite 
volume soil, respectively. Fig. 6 shows the worst step 
voltages (1 m from the ground electrode on both sides). 
Profile 11 is above the electrode which leads to the 
highest step voltages. The results show the end effects 
of the leakage current distribution in the linear 
electrode. The GPR and resistance of the electrode in 
Table VIII agree very well with those in Table VII, as 
expected. However, the maximum step voltage 3.79 V 
computed by Method A is about 48% lower than the 
maximum step voltage of 5.6 V computed using in 
Method B, which is slightly higher than the maximum 
step voltage threshold of 5.4 V/m used in this design 
[5]. Fig. 6 indicates that the step voltages are 
underestimated by Eq. (5) near the end of the electrode 
and overestimated near the center of the electrode. 

 

TABLE VII   
THE LINEAR ELECTRODE DESIGN IN CHAPTER 5 OF [5]: 

METHOD A 
 

Electrode Characteristics 
Length: 1165 m; Equivalent Conductor Radius: 0.318 m (0.5 m 

by 0.5 m coke section); Burial Depth: 2.25 m 
Soil Model 

50 Ω-m uniform 
Computation Results 

Maximum  
GPR 
(V) 

 
Resistance 

(Ω) 
Current 
Density 
(A/m2) 

Earth 
Potential 

(V) 

Touch 
Voltage 

(V) 

Step 
Voltage 

(V) 
112  0.0898  N/A N/A N/A  3.79 V 

 
TABLE VIII   

THE LINEAR ELECTRODE DESIGN IN CHAPTER 5 OF [5]: 
METHOD B (UNIFORM SOIL) 

 
Computation Results 

Maximum  
GPR 
(V) 

 
Resistance 

(Ω) 
Current 
Density 
(A/m2) 

Earth 
Potential 

(V) 

Touch 
Voltage 

(V) 

Step 
Voltage 

(V) 
110  0.0878  0.843 100.3 48  5.6 V 

 
TABLE IX   

THE LINEAR ELECTRODE DESIGN IN CHAPTER 5 OF [5]: 
METHOD B  

(FINITE VOLUME SOIL) 
 

Computation Results 
Maximum  

GPR 
(V) 

 
Resistance 

(Ω) 
Current 
Density 
(A/m2) 

Earth 
Potential 

(V) 

Touch 
Voltage 

(V) 

Step 
Voltage 

(V) 
106  0.0846  0.823 96 47  5.5 V 

 
When the river is modeled by a finite volume soil 

(see Fig. 5), the electrode resistance and step voltages 
are reduced slightly (see Table IX). Fig. 7 shows step 
voltages in the vicinity of the river. The maximum value 
is 0.99 V, near the river bank close to the electrode. In 
the water, the step voltages drop quickly to below 
0.42 V.  

 

 
 

Fig. 6.   Step voltage along a linear ground electrode. 

 
Fig. 7.    Step voltages in river represented by finite volume soil. 

VI. SHORE ELECTRODE IN VERTICALLY 
LAYERED SOILS 

 
In this section, we will discuss how to model a shore 

electrode in a vertically layered soil, which simulates a 
seashore. We select the Danish seashore anode design 
of the Konti-Skan link as an example. The objective is 
to compare the computation results using Method B 
with the measurements.  

 
The Danish seashore anode contains an array of 25 

vertical electrodes or ground wells placed along the 
seashore, about 20 m inland. Details of the design can 
be found in [5,6]. The resistance of the electrode is 
calculated to be 0.04 Ω, which is also the measured 
value. The greatest surface voltage gradient is 2 V/m 
near the outmost electrodes. The highest gradient 
measured in the sea at the normal shore line is 0.3 V/m 
[6]. 

 
In our computer model, a conductor network model is 

set up based on Fig. 33 of [6]. Fig. 8 shows the 
configuration of the electrode. Each ground well is 
represented by a vertical conductor with a radius of 
0.637 m and a length of 3.5 m. It represents an 
equivalent of the 1m×1m×3.5m coke bed. The 25 wells 
are spaced 5 m apart, except for the last three wells at 
both ends. As indicated in Fig. 8, the spacings are 
reduced to 4 m (between Wells 2 to 3, and 23 to 24) and 
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3 m (between Wells 1 to 2, and 24 to 25), in order to 
better distribute the leakage current throughout the 
electrode system. The rated current of 1000 A is 
distributed to each well by an insulated wire, which has 
a cross section of 25 mm2. 

 

` 
 

Fig. 8.   Configuration of shore electrode. 
 
The seashore is represented by a 2-layer vertical soil. 

The land has a resistivity value in the range of 1.5-8 Ω-
m and the seawater has a resistivity in the range of 0.25-
0.3 Ω-m. The 25 wells are buried in the high resistivity 
land layer, 20 m away from the soil/seawater interface 
(see Fig. 8).  

 
Table X presents the computation results, based on a 

5 Ω-m for the soil. The computed resistance increases to 
0.065 Ω if 8 Ω-m is used for the land. Fig. 9 shows the 
step voltages around the electrode (50 m on both sides). 
The maximum step voltage occurs near the ends of the 
electrode. This value is about 4 times higher than the 
measured value of 2 V. The step voltages in the sea are 
presented in Fig. 10. The maximum value is 0.06 V, 
which is smaller than the maximum measured value 
0.3 V [6].  

 

 
TABLE X   

THE DANISH ANODE DESIGN OF KONTI-SKAN LINK BY 
METHOD B 

 
Soil Resistivity (Ω-m) Layer 

5  Upper 
0.3  Lower 

Computation Results 
Maximum  

GPR 
(V) 

 
Resistance 

(Ω) 
Current 
Density 
(A/m2) 

Earth 
Potential 

(V) 

Touch 
Voltage 

(V) 

Step 
Voltage 

(V) 
41  0.041  3.404V 40 21  8.0 V 

 

 
 

Fig. 9.   Step voltage around the electrode. 

 

 
Fig. 10.   Step voltages in the sea. 

VII. CONCLUSIONS 
 
This paper discusses and compares HVDC ground 

electrode design methods in various soil structures. A 
number of cases are selected based on existing HVDC 
ground electrodes, in order to compare the conventional 
simplified design method (Method A) with a more 
advanced grounding design method using a specialized 
engineering software (Method B). The various soil 
structures considered include horizontally layered soils, 
vertically layered soils and finite volume soils. In all 
cases studied, grounding grid resistances, current 
distributions, earth surface potentials and touch/step 
voltages are computed and compared. The results of 
Method B are also compared with the measurements.  

 
For the cases studied in this paper, it is found that the 

step voltages computed by Method A are usually lower 
than those obtained using Method B. This is especially 
true for a horizontal linear electrode, for which the step 
voltages near the end of electrode could be 
underestimated by as much as 48%. The results 
presented in this paper provide useful insight and 
information for accurately designing DC ground 
electrodes in various soil structures.  

VIII. REFERENCES 
 

[1] J. Arrillaga, High Voltage Direct Current Transmission, 
IEE Power and Energy Series, 29, 2nd edition, 1998. 

[2] B. Andersen, and C. Barker, “A new era in HVDC?”  
IEE Review, pp. 33-39,March 2000. 

[3] F. P. Dawalibi and F. Donoso, “Integrated analysis 
software for grounding, EMF, and EMI,” IEEE 
Computer Applications in Power, vol. 6, no. 2, pp. 19-
24, 1993. 

[4] J. Liu, F. P. Dawalibi, J. Ma and R. D. Southey, “HVDC 
advanced analysis methods for grounding design and dc 
interference mitigation techniques” 2002 3rd 
International Symposium on Electromagnetic 
Compatibility (EMC’2002/Beijing), Beijing, pp. 202-
206, May, 2002. 

[5] EPRI EL-2020, HVDC Ground Electrode Design, 
August 1981. 

[6] E. W. Kimbark, Direct Current Transmission, Volume I, 
Chapter 9, WILEY-INTERSCIENCE, 1971. 

[7] A. W. Peabody and C. G. Siegfried, “Corrosion control 
problems and personnel hazard control problems caused 



  

 
Copyright © 2005 Safe Engineering Services & technologies ltd. All rights reserved. 

by HVDC and HVAC transmission systems on non-
associated underground facilities,” CIGRE International 
Conference on Large High Voltage Electric Systems, 
1974. 

[8] Report, “Full-scale stray-current test HVDC power 
transmission: the Dalles-Los Angeles,” Dec. 1970. 

IX. ACKNOWLEDEMENT 
 

The authors would like to thank Dr. Simon Fortin, Research 
Scientists at Safe Engineering Services & technologies ltd., for 
his assistance in this study. 

X. BIOGRAPHIES 
 

Dr. Winston Ruan was born in Gansu, P. R. China in October 1964. 
He received the B.Sc. degree in physics from Lanzhou University, P. 
R. China in 1985. He received the Ph.D. degree in experimental 
physics in 1993, from the University of Manitoba, Winnipeg, Canada, 
where he worked from 1987 to 1992 on constructing a SQUID AC 
susceptometer/ magnetometer and studied magnetic phase transitions 
in reentrant magnetic alloys with quenched structural disorder.  

In 1993, he worked on Electrical Impedance Tomography using 
induced current methods, as a postdoctoral fellow in the Institute of 
Biomedical Engineering at Ecole Polytechnique, University of 
Montreal.  

Since April 1994, he has been with the R&D Department of Safe 
Engineering Services & technologies ltd. His research interests 
include the computation of electromagnetic fields, transient 
phenomena due to lightning or switching, as well as AC interference 
between transmission lines and pipelines. 
 
Dr. Jinxi Ma (M'91, SM'00) was born in Shandong, P. R. China in 
December 1956. He received the B.Sc. degree in radioelectronics from 
Shandong University, and the M.Sc. degree in electrical engineering 
from Beijing University of Aeronautics and Astronautics, in 1982 and 
1984, respectively. He received the Ph.D. degree in electrical and 
computer engineering from the University of Manitoba, Winnipeg, 
Canada in 1991. From 1984 to 1986, he was a faculty member with 
the Department of Electrical Engineering, Beijing University of 
Aeronautics and Astronautics. He worked on projects involving 
design and analysis of reflector antennas and calculations of radar 
cross sections of aircraft. 
 
Since September 1990, he has been with the R & D Department of 
Safe Engineering Services & technologies in Montreal, where he is 
presently serving as manager of the Analytical R & D Department. 
His research interests are in transient electromagnetic scattering, EMI 
and EMC, and analysis of grounding systems in various soil 
structures.  
 
Dr. Ma is the author of more than eighty papers on transient 
electromagnetic scattering, analysis and design of reflector antennas, 
power system grounding, lightning, and electromagnetic interference. 
He is a senior member of the IEEE Power Engineering Society, a 
member of the IEEE Standards Association, and a corresponding 
member of the IEEE Substations Committee and is active on Working 
Groups D7 and D9.  

 
Jie Liu received the B.Eng. and the M. Eng. degree in Electrical 
Engineering in 1985 and 1990, respectively. She is presently serving 
as scientific researcher at Safe Engineering Services & technologies 
ltd. Her research interests are electrical grounding systems, EMC, and 
various aspects of electrical power system analysis, modeling, control, 
and management.  
 
She is the author of more than 10 papers on electrical power system 
safety, quality, EMC, and computer applications. 
 
Dr. Farid Paul Dawalibi (M'72, SM'82) was born in Lebanon in 
November 1947. He received a Bachelor of Engineering degree from 
St. Joseph's University, affiliated with the University of Lyon, and the 
M.Sc. and Ph.D. degrees from Ecole Polytechnique of the University 
of Montreal. From 1971 to 1976, he worked as a consulting engineer 
with the Shawinigan Engineering Company, in Montreal. He worked 
on numerous projects involving power system analysis and design, 
railway electrification studies and specialized computer software code 
development. In 1976, he joined Montel-Sprecher & Schuh, a 
manufacturer of high voltage equipment in Montreal, as Manager of 
Technical Services and was involved in power system design, 
equipment selection and testing for systems ranging from a few to 
several hundred kV. 
 
In 1979, he founded Safe Engineering Services & technologies, a 
company which specializes in soil effects on power networks. Since 
then he has been responsible for the engineering activities of the 
company including the development of computer software related to 
power system applications. 
 
He is the author of more than one hundred and fifty papers on power 
system grounding, lightning, inductive interference and 
electromagnetic field analysis. He has written several research reports 
for CEA and EPRI.  
 
Dr. Dawalibi is a corresponding member of various IEEE Committee 
Working Groups, and a senior member of the IEEE Power 
Engineering Society and the Canadian Society for Electrical 
Engineering. He is a registered Engineer in the Province of Quebec. 
 
Robert D. Southey, Eng., graduated from McGill University, 
Montreal, in December 1985 with a B. Eng. (Honours) degree in 
Electrical Engineering. From that time to the present, he has worked 
for Safe Engineering Services & technologies ltd., where he is now 
manager of the Applied R&D Department. He has been extensively 
involved in several major AC interference mitigation design studies 
and grounding studies.  
 
Mr. Southey is a member of IEEE and a registered Engineer in the 
Province of Quebec 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


